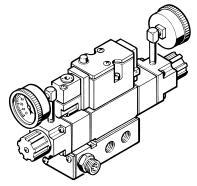
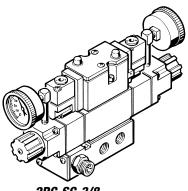
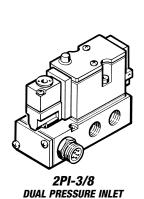
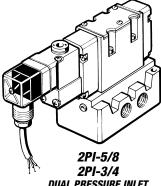

502-CV-001-00

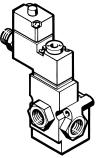
SERVICE MANUAL AND REPAIR PARTS FOR Pneumatic Control


Valves & Accessories


1PC-3/8 SINGLE PRESSURE CONTROL VALVE


3PC-DC-3/8 TWO STATION MANIFOLD THREE PRESSURE DUAL CONTROL VALVES


2PC-3/8 DUAL PRESSURE CONTROL VALVE


2PC-SC-3/8 2PC-DC-3/8 DUAL PRESSURE CONTROL VALVE

CONTROL VALVE

DUAL PRESSURE INLET CONTROL VALVE

2PI-Br-3/8 SINGLE PRESSURE CONTROL VALVE (Motor Brakes)

FORCE CONTROL INDUSTRIES, INC.

WARNING - Read this manual before any installation, maintenance or operation.

MANUFACTURERS OF MECHANICAL AND ELECTRICAL POWER TRANSMISSION EQUIPMENT

Limited Warranty

Force Control Industries, Inc. ("Force Control") warrants its products to be free from defects in material and workmanship under normal and proper use for a period of one year from the date of shipment. Any products purchased from Force Control that upon inspection at Force Control's factory prove to be defective as a result of normal use during the one year period will be repaired or replaced (at Force Controls' option) without any charge for parts or labor. This limited warranty shall be void in regard to (1) any product or part thereof which has been altered or repaired by a buyer without Force Control's previous written consent or (2) any product or part thereof that has been subjected to unusual electrical, physical or mechanical stress, or upon which the original identification marks have been removed or altered. Transportation charges for shipping any product or part thereof that the buyer claims is covered by this limited warranty shall be paid by the buyer. If Force Control determines that any product or part thereof should be repaired or replaced under the terms of this limited warranty it will pay for shipping the repaired or replaced product or part thereof back to the buyer. EXCEPT FOR THE EXPRESS WARRANTY SET OUT ABOVE, FORCE CONTROL DOES NOT GRANT ANY WARRANTIES EITHER EXPRESSED OR IMPLIED, INCLUDING IMPLIED WARRANTIES OF MERCHANTABIL-ITY OR FITNESS FOR USE. The warranty obligation set forth above is in lieu of all obligations or liabilities of Force Control for any damages. Force Control specifically shall not be liable for any costs incurred by the buyer in disconnecting or re-installing any product or part thereof repaired or replace under the limited warranty set out above. FORCE CONTROL EXPRESSLY EXCLUDES ALL LIABILITY FOR ANY INDIRECT OR CONSE-QUENTIAL DAMAGES THE BUYER MAY SUSTAIN IN CONNECTION WITH THE DELIVERY, USE, OR PERFORMANCE OF FORCE CONTROL PRODUCTS. Under no circumstances shall any liability for which Force Control is held responsible exceed the selling price to the buyer of the Force Control products that are proven to be defective. This limited warranty may be modified only in writing signed by a duly authorized officer of the company. This limited warranty applies exclusively to Force Control products; warranties for motors and gear reducers and other component parts may be provided by their respective manufactures. Any legal action for breach of any Force Control warranty must be commenced within one year of the date on which the breach is or should have been discovered.

A Return Goods Authorization (RGA) number must be obtained from the factory and clearly marked on the outside of the package before any equipment will be accepted for warranty work. Force Control will pay the shipping costs of returning the owner parts that are covered by warranty.

Force Control believes that the information in this document is accurate. The document has been carefully reviewed for technical accuracy. In the event that technical or typographical errors exist, Force Control reserves the right to make changes to subsequent editions of this document without prior notice to holders of this edition. The reader should consult Force Control if errors are suspected. In no event shall Force Control be liable for any damages arising out of or related to this document or the information contained in it.

PNEUMATIC CONTROLS -

This manual lists and describes all standard Pneumatic Mac Brand Control Valves and Accessories used on Posidyne Clutch/Brakes, Posistop Motor Brakes and Posidyne Dual Clutch Units.

TABLE OF CONTENTS

Pneumatic Actuation System	1
A. How a <i>Posidyne</i> Clutch/Brake, <i>Posistop</i> Brake and <i>Positorg</i> Brake Works	1
B. How to Set the Air Pressure	1
C. Types of Applications and Air System Requirements	2
Pneumatic Valve Selection Chart	3
Installation and Design Recommendations	4
Mac Control Valve Electrical Specifications	4
1PC-3/8 Single Pressure, Single Solenoid Control Valve	5
2PC-3/8 Dual Pressure, Single Solenoid Control Valve	6
2PC-SC-3/8 and 2PC-DC-3/8 Dual Pressure, Dual Solenoid Control Valve	7
3PC-DC-3/8 Two Station Manifold with Dual Control Valves	8
2PI-3/8 Two Pressure Inlet Control Valve	9
2PI-5/8 and 2PI-3/4 Two Pressure Inlet Control Valves	10
1PI-Br-3/8 Control Valve for Motor Brake Applications	11
Control Valve Electrical Wiring	12
Accumulators, Optional Manifold Mounted Control Valve and Quick Exhaust Valves	13
Trouble Shooting Procedure	14
Checking Solenoid Coils	15
General Repair, Servicing and Ordering Repair Parts	16
Control Valve Repair Parts Information Form	16
Posidyne Pressure vs. Static Torque Charts	
(01-1.5 Single Clutch and 1.5 Dual Clutch)	17
(02-03 Single and Dual Clutch)	
(05-20 Single and Dual Clutch)	
(02 and 2.5 Multi-Speed Drive)	
Posistop Motor Brake Pressure vs. Static Torque Chart	
Torque vs. Motor Frame Size Chart	19
How to Order Your Pneumatic Control Valve	20

PNEUMATIC ACTUATION SYSTEM

A. HOW A Posidyne CLUTCH/BRAKE, Posistop BRAKE AND Positorq BRAKE WORKS

1. The *Posidyne* Clutch/Brake always has an air set clutch. Therefore the clutch torque is related to the actuation pressure.

The Brake can be air set, spring set or spring set with air assist. Spring set with air assist means the brake is partially set with springs, then air pressure on the piston can be used to increase the brake torque up to the maximum. The "P" logic is an air set brake, the "S" and "SA" are spring set with air assist and the "A" and "B" logics are just spring set.

2. The *Posistop* **Brake** comes in several varieties. It can be spring set with air release or air set with spring release.

The **Posistop Motor Brake** is normally spring set with air release. The **Foot Mounted** *Posistop* with "A" and "B" Logic is also normally spring set with air release. The air pressure is used to release the brake. The springs determine the torque the brake will transmit.

The **Foot Mounted** *Posistop* with "S" Logic is air set and spring release. The torque is directly related to the air pressure on the actuating piston.

3. The *Positorq* **Brake** is an air set brake with spring release. The air pressure on the actuating piston is directly related to the torque transmitted to the load. The springs release the brake when the air pressure on the actuating piston is exhausted.

Unit	Logic	Clutch	Brake
Posidyne Clutch	C	Air Set	
	S or SA	Air Set	Spring Set/Air Assist
Posidyne Clutch/Brake	A or B	Air Set	Spring Set
	Р	Air Set	Air Set
Posistop Motor Brake			Spring Set
Posistop Foot	S		Air Set
Mounted Brake	A or B		Spring Set
Positorq Brake			Air Set

Only one air pressure is required in *the Pos*istop and *Positorq* Brake products and *Posidyne* "C" Logic (Clutch Only), "A" or "B" Logic products. If the pressure is used to set the torque it must have an adjustable regulator. It is best to also have a regulator for the air release products, but it is not required.

Two air pressures are required for the other *Posidyne* Clutch/Brakes ("S", "SA" and "P" Logics). One for the clutch and one for the brake. **This is critical for proper operation.**

B. HOW TO SET THE AIR PRESSURE

WARNING - Air pressure settings on the clutch or brake that are too high will cause severe jerky motion and can cause damage to the drive train components and/or other machine components. If the air pressure settings are too low, over-heating can occur (clutch slipping), errors in positioning and severe wear.

Air Set Clutch

If the unit is Air Set the pressure is directly related to the torque transmitted by the clutch. The pressure must not exceed the maximum shown in the Specification Charts on pages 17, 18 and 19 or severe damage will result to the unit. It is also important to reduce the pressure to that required by the load so as not to severely jerk the load causing damage to other components in the drive train.

Determining Clutch Torque

There are several ways to determine the required air pressure. (The Clutch Torque is based on required torque.)

- 1. The clutch torque can best be determined by knowing the load, inertia and time in seconds for acceleration. Further explanation can be found in the APC Catalog.
- 2. The motor horsepower can be used as a guide to set the Clutch Torque using the following formula. The Clutch Air Pressure can be set to this torque by using the *Pressure Vs Static Torque Charts* on pages 17, 18 and 19.

RPM	Lb. In./HP	Lb.Ft./HP
1800	36	3
1200	54	4.5
900	72	6

Motor HP X Lb. Ins./HP X Ratio of Drive Between Motor and Clutch/Brake X 175% = Approx. Clutch Torque Initial Setting in Lb. Ins. (T_R)

EXAMPLE: 3 HP, 1800 RPM Motor, 2:1 Belt Drive to *Posidyne* (3 X 36 X 2 X 1.75 = 378)

3. Calculate Actuation Pressure for Torque Required (T_R).

PNEUMATIC CONTROLS -

Now use the following Formula for determining the *Actuation Pressure for a Required Torque*.

Clutch PSI =
$$(T_R / C_T) + C_E$$

Example: Size 2.5 Posidyne Clutch/Brake with "S" Logic (See Chart on Page 17)

Clutch PSI = (378 / 21) + 6.84

Clutch PSI = 24.8 PSI (Initial Clutch Pressure Setting)

 Several operations will determine if the pressure needs to be increased or decreased based on jerking, slipping and overheating. (*The Clutch must not be allowed to slip more than 1 to 2 Seconds.*)

Air Set or Air Assist Brake

Brake Torque on a Clutch/Brake is even more critical as the torque that the brake is set to will be transmitted to the load through the drive train. The clutch is often limited by how much torque the motor can develop. Also in many applications the required brake torque is much less than what is required by the clutch. This is common in high friction loads (conveyors) and worm gear drives, especially with high ratios. Other factors come in to play on vertical loads.

Also in the *Posidyne* Clutch/Brakes the "S" and "SA" logic units have spring set pistons with air assist. This means the brake will be set with no air pressure. The air assist will increase brake torque above the spring set torque. It is critical that the stopping torque be determined and set according to the charts on pages 17, 18 and 19. Excessive torque settings on the brake can damage drive train components if not set properly.

Determining Brake Torque

- 1. The **Brake Torque** can be determined using the load, inertia and time in seconds for deceleration. Further explanation can be found in our APC Catalog. The brake air pressure can be set to this torque by using the charts on pages 17, 18 and 19.
- 2. The Motor Horsepower can be used as a guide to set the **Brake Torque** using the following formula.

Posidyne or Posistop Brake Formula (For Brake Torque)

Motor HP X Lb. Ft./HP X Ratio of Drive Between Motor and Clutch/Brake X 150% = Approx. Brake Torque Initial Setting in Lb. Ft. (T_R)

Brake PSI =
$$(T_R / B_T) + B_S$$

High friction loads, especially with the "SA" logic, the brake pressure should be set to a minimum of 0 to 5 PSI.

Several operations will determine if the air pressure needs to be increased or decreased, based on jerking or slipping.

CAUTION - Never set the brake on a *Posidyne* Clutch/Brake with "SA" Logic higher than 40 PSI.

Air Release Units

1. If the unit is spring set, the torque is determined by the springs. The air pressure is used to release the unit. The air pressure must exceed the minimum to release the stack. The maximum is not critical, however higher than required pressures may cause a delay in engaging due to the extra volume of air in the piston chamber.

A quick exhaust valve can be helpful in this situation. (See charts on pages 17, 18 and 19 for air pressure ranges.)

C. TYPES OF APPLICATIONS AND AIR SYSTEM REQUIREMENTS

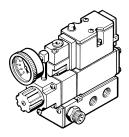
Air system components will vary by the type of application.

The air actuation system is critical to the operation of the Force Control Clutch and Brake Systems. The air system may be set up differently depending on the product, but is determined by the following factors:

- 1. Is the Clutch or Brake air set, air assist or spring set?
- 2. Is positioning accuracy critical?
- 3. Is this a high cycle application? (Greater than 60 CPS.)

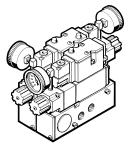
Low Cycle Applications

For low cycle applications or if positioning accuracy is not critical the sandwich regulator built into the control valve is a convenient and simple assembly. The control Valve can be manifold mounted (directly mounted on the unit housing eliminating hoses and fittings), or pre-plumbed and mounted (mounted on a plate or bracket on the housing with hoses preplumbed from the valve to the actuating ports).

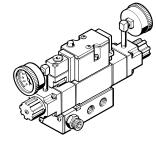

Accurate Positioning Applications

If Positioning Accuracy is required, the manifold mounted control valve is ideal. It should also use a DC solenoid (24 VDC is common). It is also critical that the actuating air pressure be consistent. If this cannot be assured, a set of accumulators should be used. For even better Positioning Accuracy and Consistency consider the *CLPC Closed Loop Positioning Control.* Ask for Catalog *CLPC-908*.

High Cycle Applications


For High Cycle Applications the manifold mounted control valve is highly recommended. If not available a pre-plumbed and mounted control valve assembly should be used. A DC solenoid is also required, as well as a 2-Pressure Inlet (PI) Control Valve. Accumulators are also required for best results and should have the pressure regulators installed so the air is drawn directly from the accumulator and not through the regulator. If tight positioning accuracy is also required, the *CLPC Closed Loop Positioning Control* is highly recommended.

The following pages describes and illustrates the Pneumatic Control Valves used for Force Control's Drive Systems: 1. Posidyne Clutch/Brakes, 2. Posistop Motor Brakes and 3. Positorg Brakes.

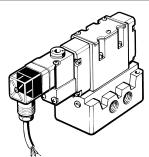

1PC-3/8 Single Pressure Control Valve Two position, four way, five ported, single solenoid, spring return, with single pressure regulator and gauge, sub-base mounted, 3/8" NPT.

(Located on Page 5)

3PC-DC-3/8 Two Station Manifold Three Pressure Control Valve Station 1-Two position, four way, five ported, single solenoid, spring return, with single pressure sandwich regulator and gauge, 3/8" NPT; Station 2-Three position, four way, center position to exhaust, dual solenoid, spring return, with dual pressure sandwich regulator and gauge, 3/8" NPT.

(Located on Page 8)

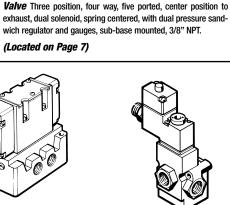
2PC-3/8 Dual Pressure Control Valve


Dual Pressure Inlet

Control Valve Two position, four way,

five ported, single solenoid, spring return,

Two position, four way, five ported, single solenoid, spring return, with dual pressure sandwich regulator and gauges, sub-base mounted, 3/8" NPT.


(Located on Page 6)

(Located on Page 7)

2PI-5/8 2PI-3/4 Dual Pressure Inlet Control Valve Two position, four way, five ported, single solenoid, spring return, 5/8" NPT and 3/4" NPT.

(Located on Page 10)

2PC-SC-3/8 2PC-DC-3/8 Dual Pressure Control

2PI-Br-3/8 Single **Pressure Control Valve** Two position, two way, three ported, single sol., spring return, internal pilot operated, normally closed, 3/8" NPT.

(Located on Page 11)

Pneumatic Valve Selection Charts

Force Control's family of Oil Shear Clutch and Brake Products are most often actuated by pneumatic control valves. Torque control of the units is accomplished by adjusting the actuation pressure. To aid the designer in the selection specification of the correct control circuit the charts below have been provided. During the selection process of the Posidyne or Posistop a particular logic type was decided upon. Based on the logic type of your unit find the correct control valve model number indicated in the appropriate chart.

Posidyne Clutch/Brake							
Valve Model No.							
Logic	Singl	e Clutch		Dual Clutch			
	Sizes 01 to 10	Sizes 11	Size 20	Dudi Giulgii			
S	2PC-3/8 or 2PI-3/8	2PI-5/8	2PI-3/4	N/A			
SA	2PC-3/8 or 2PI-3/8	2PI-5/8	2PI-3/4	3PC-DC-3/8			
Α	1PC-3/8 or 2PI-3/8*	2PI-5/8*	2PI-3/4*	2PC-DC-3/8			
В	1PC-3/8 or 2PI-3/8*	2PI-5/8*	2PI-3/4*	2PC-DC-3/8			
C	1PC-3/8 or 2PI-3/8*	2PI-5/8*	2PI-3/4*	2PC-DC-3/8			
SCP	2PC-SC-3/8 or 2PI-3/8	2PI-5/8	2PI-3/4	3PC-DC-3/8			
Р	2PC-3/8 or 2PI-3/8	2PI-5/8	2PI-3/4	N/A			

2PI-3/8

3/8" NPT.

(Located on Page 9)

Posistop Motor Brake

Lorio	Valve	Model No.			
Logic	Foot Mtd.	Motor Mtd.			
S					
A	2PI-Br-3/8 or 1PC-3/8				
В					

* - When using a Model 2 PI Control Valve for A, B or C Logic Single Clutch Unit, the brake port is not used and must be plugged.

Installation and Design Recommendations

A. Air Supply

The Air Supply should be dry and free of all contamination. The cleaner the air is the longer the control valves and drive unit will last.

Lubricated air will make the pneumatic control valves last longer but. . .

...too much oil will fill up the piston chamber with oil and cause sluggish actuation of the piston. *No oil is better than too much oil. Lubricated air is not necessary for our drive units.*

B. Air Line Sizes and Fittings

The optimum air line size is 3/8" for sizes 01 through 11 *Posidyne* Clutch/Brakes and 056 through 280 *Posistop* Brakes. The size 20 *Posidyne* Clutch/Brake and size 320 *Posistop* Brake should have 1/2" air lines. The fewest number of fittings should be used and all fittings should be maximum flow type. A tee and pressure gauge located near the actuation port is often helpful for troubleshooting.

C. Manifold Mounting

The internal piston volumes of Force Control Clutch/Brake and Brake Products is quite low. The control valves should be located as close as possible to the unit, as this directly affects the response time and consistency. Most of the Pneumatic Control Valves shown in this manual have Manifold Mounting available which is the best arrangement because it eliminates the external plumbing between the Control Valve and the Force Control Unit.

Each Sub-Base for Manifold Mounting is shown and listed for each Control Valve.

D. Accumulators

In High Cycle Applications, for the best response and consistency, one accumulator should be used for the clutch and one for the brake on *Posidyne* clutch/brakes. This will maintain a constant pressure to the unit. Regulators should be located on the inlet to the accumulators. See Page 13 for available Accumulator Assemblies.

E. Air Line Connections

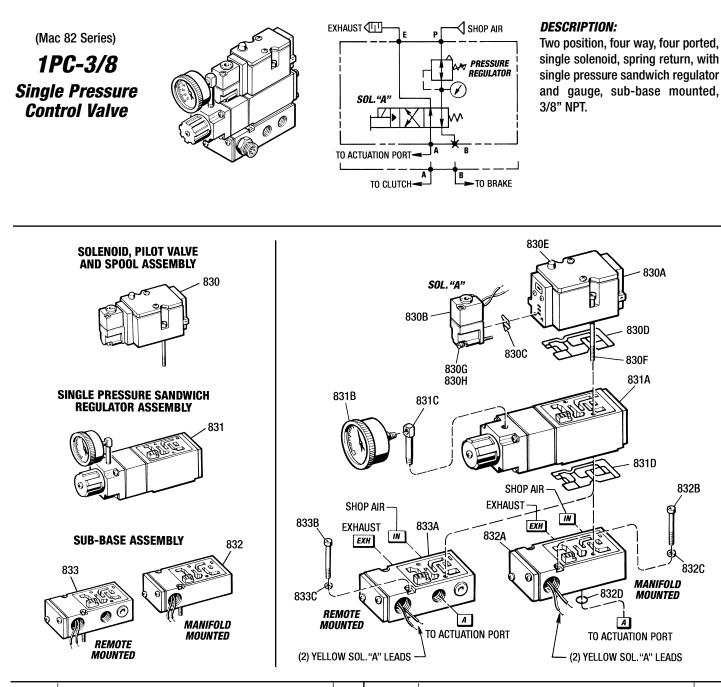
Both top and bottom porting is supplied in many of the models. Whenever possible, bottom porting is recommended to purge any contamination from the piston chamber.

F. High Speed - High Accuracy Applications

For High Speed and High Accuracy Applications the system should be equipped with a consistent air supply, accumulators of the proper size *(Consult Force Control for assistance)*, with regulators on the input, large hoses to the valve and manifold mounted valve, if possible. If not manifold mounted, the valve should be located as close as possible and quick exhaust valves should be used at the actuation port.

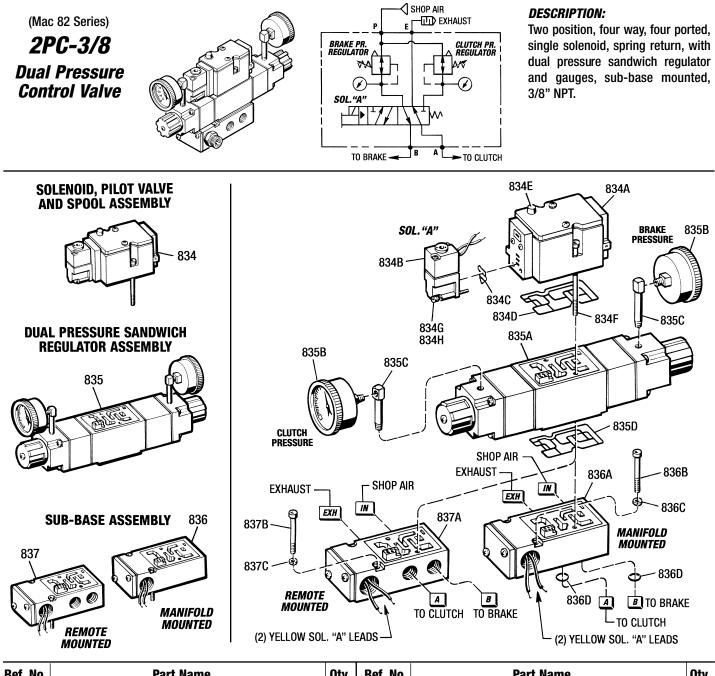
G. Electronic Controls

Many of the positioning problems associated with the clutch/brake can be traced to the control system. PLC controls often include scan time delays depending on the speed of the control and number of lines of code used. High-speed cards may be required. The type of limit switches can also cause position error.

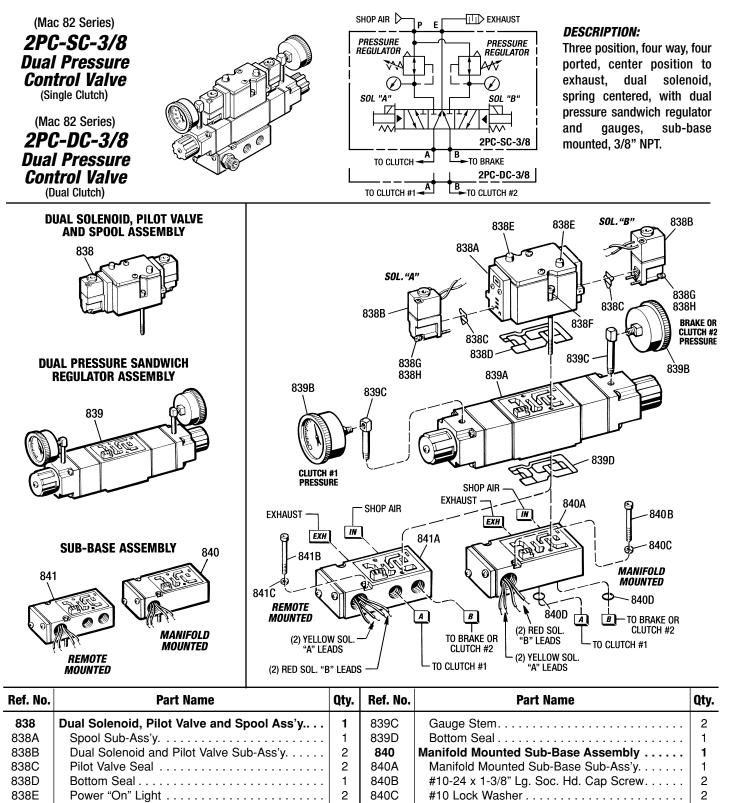

Force Control has developed the **CLPC** Closed Loop Positioning Control which eliminates scan time problems. The **CLPC** is closed loop to correct positioning errors and will compensate for cold start to hot run phase shift, as well as adjustment for changing speeds, loads and other variables in the drive system. (See Section 11 in our All Products Catalog for further information on the **CLPC** series controls.)

NOTES: All valves Cv = 1.0 Min.; All solenoids are standard 24 VDC or 110 VAC continuous duty rated for 50/60 Hz operation. Hazardous location solenoids are available. Consult factory. See chart below for Electrical Specifications on all Control Valves

Mac VALVE Series	VOLTAGE (AC/DC)	AC CYCLES (CPS)	POWER Rating (Watts)	IN-RUSH CURRENT (AMPS)	HOLDING CURRENT (AMPS)	TIME TO ENERGIZE (SEC.)	TIME TO DE-ENERGIZE (SEC.)	COIL RESISTANCE (OHMS)
55 Series	24 VDC		6		.35	.009	.005	64.2 - 71.5
33 36 1165	110 VAC	50/60	6.8	.12	.09	.011	.011	481 - 563
82 Series	24VDC		12.7		.53	.006	.007	42.8 - 47.8
02 501105	110 VAC	50/60	6.8	.09	.06	.011	.016	640 - 756
ISO II Series	24 VDC		17.1		.71	.007	.011	32.0 - 35.2
130 II Series	110 VAC	50/60	6.8	.12	.09	.006012	.010017	481 - 563
ISO III Series	24 VDC		17.1		.71	.007	.011	32.0 - 35.2
130 111 301105	110 VAC	50/60	6.8	.12	.09	.006	.010017	481 - 563


Mac Control Valve Electrical Specifications

PNEUMATIC CONTROLS


Ref. No.	Part Name	Qty.	Ref. No.	Part Name	Qty.
830	Solenoid, Pilot Valve and Spool Assembly	1	831C	Gauge Stem	1
830A	Spool Sub-Ass'y.	1	831D	Bottom Seal	
830B	Solenoid and Pilot Valve Sub-Ass'y	1	832	Manifold Mounted Sub-Base Assembly	1
830C	Pilot Valve Seal	1	832A	Manifold Mounted Sub-Base Sub-Ass'y	1
830D	Bottom Seal	1	832B	#10-24 x 1-3/8" Lg. Soc. Hd. Cap Screw	2
830E	Power "On" Light	1	832C	#10 Lock Washer	2
830F	M4 x 0.7 x 73 mm Soc. Hd. Screw	2	832D	Bottom Seal	1
830G	M3 x 0.5 x 35 mm Soc. Hd. Screw	2	833	Remote Mounted Sub-Base Assembly	1
830H	M3 Lock Washer	2	833A	Remote Mounted Sub-Base Sub-Ass'y.	1
831	Single Pressure Sandwich Regulator Assembly.	1	833B	#10-24 x 1-3/8" Lg. Soc. Hd. Cap Screw	2
831A	Single Pressure Sandwich Regulator Sub-Ass'y.	1	833C	#10 Lock Washer	2
831B	Pressure Gauge	1			

PNEUMATIC CONTROLS -

Ref. No.	Part Name	Qty.	Ref. No.	Part Name	Qty.
834	Solenoid, Pilot Valve and Spool Assembly	1	835C	Gauge Stem	2
834A	Spool Sub-Ass'y.	1	835D	Bottom Seal	1
834B	Solenoid and Pilot Valve Sub-Ass'y	1	836	Manifold Mounted Sub-Base Assembly	1
834C	Pilot Valve Seal	1	836A	Manifold Mounted Sub-Base Sub-Ass'y	1
834D	Bottom Seal	1	836B	#10-24 x 1-3/8" Lg. Soc. Hd. Cap Screw	
834E	Power "On" Light	1	836C	#10 Lock Washer	2
834F	M4 x 0.7 x 73 mm Soc. Hd. Screw	2	836D	O-Ring	2
834G	M3 x 0.5 x 35 mm Soc. Hd. Screw	2	837	Remote Mounted Sub-Base Assembly	1
834H	M3 Lock Washer	2	837A	Remote Mounted Sub-Base Sub-Ass'y	
835	Dual Pressure Sandwich Regulator Assembly.		837B	#10-24 x 1-3/8" Lg. Soc. Hd. Cap Screw	2
835A	Dual Pressure Sandwich Regulator Sub-Ass'y	1	837C	#10 Lock Washer	2
835B	Pressure Gauge	2			

PNEUMATIC CONTROLS

2

4

4

1

1

2

840D

841

841A

841B

841C

O-Ring.....

Remote Mounted Sub-Base Sub-Ass'y.

#10-24 x 1-3/8" Lg. Soc. Hd. Cap Screw.

Remote Mounted Sub-Base Assembly

838F 838G

838H

835

839A

839B

M4 x 0.7 x 73 mm Soc. Hd. Screw

M3 x 0.5 x 35 mm Soc. Hd. Screw

M3 Lock Washer

Dual Pressure Sandwich Regulator Sub-Ass'y. .

Pressure Gauge

Dual Pressure Sandwich Regulator Assembly.

2

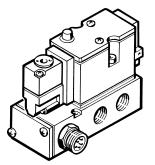
1

1

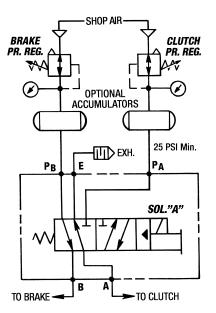
2

2

PNEUMATIC CONTROLS


SA Logic SCP Logic (Mac 82 Series) **DESCRIPTION:** 3PC-DC-3/8 **Two Station Manifold** SHOP AIR SHOP AIR STATION #1 STATION #2 STATION #1 STATION #2 (Dual Clutch -SA Logic Station 1 - Two position, four рÌ Р (Dual Clutch -SCP Logic) ported, four way single solenoid, E E CLUTCH #1 PR. REG. CLUTCH #1 PR. REG. spring return, with single pres-BRAKE CLUTCH #2 PR. REG. BRAKE PR. REG. CLUTCH #2 PR. REG. PR. REG. 自 Ê sure sandwich pressure regula-∻ EXH EXH. tor and gauge, 3/8" NPT. TAA A.V 200 ** \oslash \oslash \oslash Ø \oslash Ø Station 2 - Three position, four ported, four way, center position SOL. "B' SOL. "A' SOL. "A' SOL. "B SOL "A" SOL "A" 4 to exhaust, dual solenoid, spring return, with dual pressure sandwich pressure regu-** В P A В A B lator and gauges, 3/8" NPT. TO BRAKE TO CLUTCH #1-TO CLUTCH #2 TO BRAKE TO CLUTCH #1 TO CLUTCH #2 SOL. "B" 842 842A 842E 842B 842E **DUAL SOLENOID** CLUTCH #1 PRESSURE **PILOT VALVE AND** 842G SPOOL ASSEMBLY 843B SOL. "A" 842H 843B 842B 844A 844E 843C CLUTCH #2 842C 843 PRESSURF C DUAL 842C SOL. 842F 5 PRESSURE R 842D 842G SANDWICH 844B 842H 843C -844D REGULATOR 845B ASSEMBLY 8450 844C BRAKE 844F 844G 844H 844 845A PRESSURE 843D SINGLE SOLENOID. 846B PILOT VALVE AND 843A 846J IN TO CLUTCH #2 SPOOL ASSEMBLY EXH 846E B A 845 846H TO CLUTCH #1 845D 846F 0 Ø SINGLE PRESSURE 846D STATION *(SA LOGIC)* B TO BRAKE* \bigcirc 846A SANDWICH REGULATOR ASSEMBLY (2) YELLOW SOL. "A" LEADS (SCP LOGIC) TO BRAKE* (2) RED SOL. "B" LEADS 846C 0 \otimes 846 Ø 846E NOTES: **TWO STATION** W SHOP - PLUG PORT "A" FOR SA LOGIC. **STATION 1** 846G MANIFOLD PLUG PORT "B" FOR SCP LOGIC. EXH AIR 846F ASSEMBLY EXHAUST ** - PLUG ALL UNUSED PORTS. 6 846H -846K (2) YELLOW SOL. "A" LEADS Ref. No. Part Name Qty. Ref. No. Part Name Qty. 842 Dual Solenoid, Pilot Valve and Spool Ass'y. 1 844F M4 x 0.7 x 73 mm Soc. Hd. Screw 2 Spool Sub-Ass'y. 842A 844G M3 x 0.5 x 35 mm Soc. Hd. Screw . . . 2 1 842B Dual Solenoid and Pilot Valve Sub-Ass'y.... 2 844H 2 M3 Lock Washer . . . Single Pressure Sandwich Regulator Assembly . . . 2 842C Pilot Valve Seal 845 1 0400 045

842D	Bottom Seal	1	845A	Single Pressure Sandwich Regulator Sub-Ass'y	
842E	Power "On" Light	2	845B	Pressure Gauge 1	
842F	M4 x 0.7 x 73 mm Soc. Hd. Screw	2	845C	Gauge Stem 1	
842G	M3 x 0.5 x 35 mm Soc. Hd. Screw	4	845D	Bottom Seal 1	
842H	M3 Lock Washer	4	846	Two Station Manifold Assembly 1	
835	Dual Pressure Sandwich Regulator Assembly	1	846A	Station 1 Manifold 1	
843A	Dual Pressure Sandwich Regulator Sub-Ass'y	1	846B	Station 2 Manifold 1	
843B	Pressure Gauge	2	846C	0-Ring	
843C	Gauge Stem.	2	846D	0-Ring	
843D	Bottom Seal	1	846E	1/4"-20 x 2-1/4" Lg. Soc. Hd. Cap Screw 4	
844	Solenoid, Pilot Valve and Spool Assembly	1	846F	1/4" Lock Washer 4	
844A	Spool Sub-Ass'y.	1	846G	Threaded Extension, M5 x 0.8 mm Thread 4	
844B	Solenoid and Pilot Valve Sub-Ass'y.	1	846H	M5 Flat Washer	
844C	Pilot Valve Seal	1	846J	Hex Nut, M5 x 0.8 mm	
844D	Bottom Seal	1	846K	M5 x 0.8 x 14 mm Soc. Hd. Screw	
844E	Power "On" Light	1			


PNEUMATIC CONTROLS ·

(Mac 82 Series)

2PI-3/8 (2 Pressure Inlet-3/8)

The **2PI-3/8 Control Valve** is used on Sizes 01 to 10 *Posidyne* Clutch/Brake Units.

DESCRIPTION:


Two position, four way, five ported, single solenoid, spring return, 3/8" NPT.

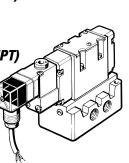
This pneumatic valve set-up requires the use of external pressure regulators. (*The Pressure Regulators must be sized to furnish the required torque.*)

For high cycle applications when a *CLPC* (Closed Loop Position Control) is used an accumulator is recommended to be installed in the inlet pressure line. (*The accumulator must be sized to be 10 x the air required per engagement.*)

(See appropriate Specification Charts for the required torque and required air per engagement.)

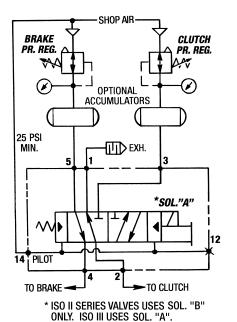
NOTE: This 2PI-3/8 with external pilot is available. Specify this when ordering because it requires a different Sub-Base.

Ref. No.	Part Name	Qty.	Ref. No.	Part Name	Qty.
847	Solenoid, Pilot Valve and Spool Assembly	1	848	Manifold Mounted Sub-Base Assembly	1
847A	Spool Sub-Ass'y.	1	848A	Manifold Mounted Sub-Base Sub-Ass'y	1
847B	Solenoid and Pilot Valve Sub-Ass'y		848B	#10-24 x 1-3/8" Lg. Soc. Hd. Cap Screw	2
847C	Pilot Valve Seal		848C	#10 Lock Washer	
847D	Bottom Seal	1	848D	Bottom Seal	1
847E	Power "On" Light	1	849	Remote Mounted Sub-Base Assembly	1
847F	M4 x 0.7 x 73 mm Soc. Hd. Screw		849A	Remote Mounted Sub-Base Sub-Ass'y.	1
847G	M3 x 0.5 x 35 mm Soc. Hd. Screw	2	849B	#10-24 x 1-3/8" Lg. Soc. Hd. Cap Screw	2
847H	M3 Lock Washer	2	849C	#10 Lock Washer	


PNEUMATIC CONTROLS

(Mac ISO II Series) 2PI-5/8 (2 Pressure Inlet-5/8" NPT)

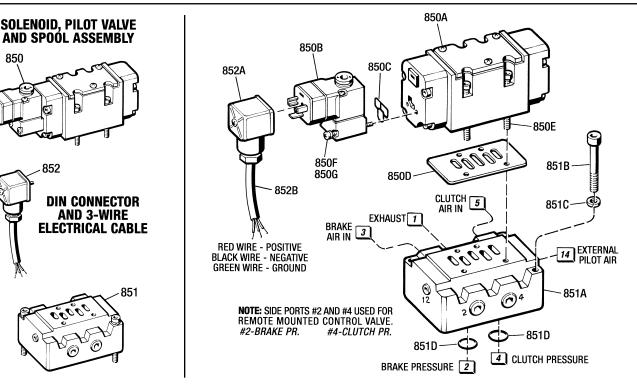
850


852

(Mac ISO III Series) 2PI-3/4 (2 Pressure Inlet-3/4" NPT)

The 2PI-5/8 Control Valve is used on Size 11 Posidyne Clutch/Brake Unit and the 2PI-3/4 Control Valve is used on the Size 20 Posidyne Clutch/Brake Unit.

NOTE: Both the 2PI-5/8 and 2PI-3/4 Control Valves are furnished with a DIN Connector and 6 Ft. long electrical cable.

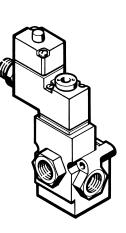

DESCRIPTION:

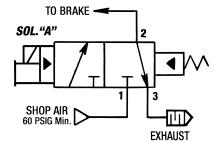
Two position, four way, five ported, single solenoid, spring return, 3/8" NPT.

This pneumatic valve set-up requires the use of external pressure regulators. (The Pressure Regulators must be sized to furnish the required torque.)

For high cycle applications when a CLPC (Closed Loop Position Control) is used an accumulator is recommended to be installed in the inlet pressure line. (The accumulator must be sized to be at least 10 x the air required per engagement.)

(See appropriate Specification Charts for the required torgue and required air per engagement.)




Ref. No.	Part Name	Qty.	Ref. No.	Part Name	Qty.
850	Solenoid, Pilot Valve and Spool Assembly	1	851	Sub-Base Assembly	1
850A	Spool Sub-Ass'y.	1	851A	Sub-Base Sub-Ass'y.	1
850B	Solenoid and Pilot Valve Sub-Ass'y	1	851B	1/4"-20 x 2-1/4" Lg. Soc. Hd. Cap Screw	2
850C	Pilot Valve Seal	1	851C	1/4" Lock Washer	2
850D	Gasket	1	851D	O-Ring	2
850E	M6 x 1 x 49 mm Soc. Hd. Screw	4	852	Electrical Cable and DIN Connector	1
850F	M4 x 0.7 x 38 mm Rd. Hd. Screw	2	852A	DIN Connector	1
850G	M4 Lock Washer	2	852B	3 Wire Electrical Cable, 6 Ft. Lg	1

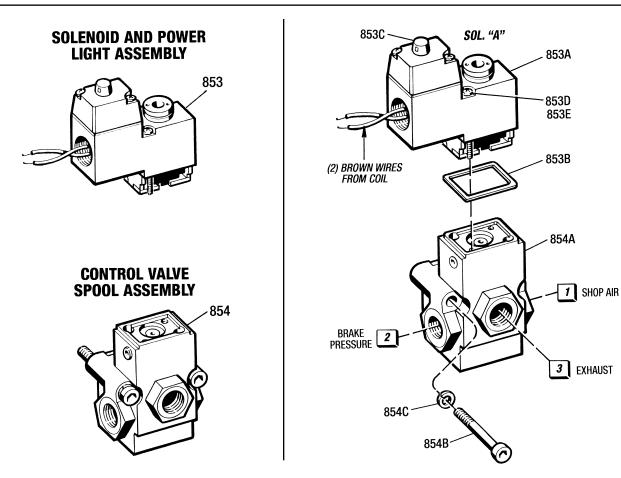
PNEUMATIC CONTROLS ·

(Mac 55 Series) **1PI-Br-3/8**

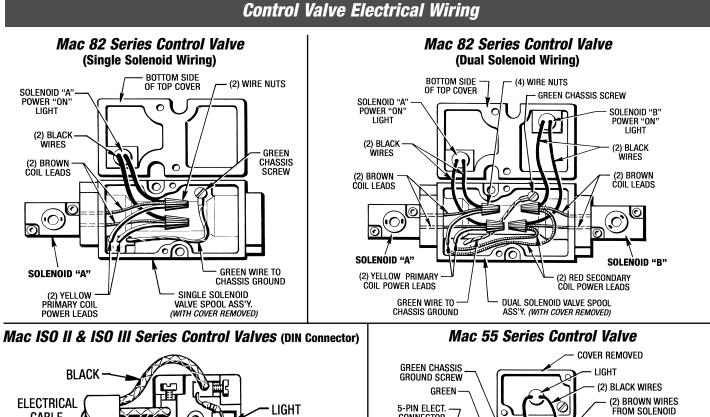
Control Valve

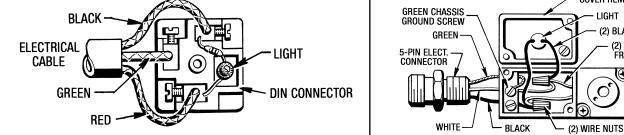
Control Valve Logic					
	RUN	STOP			
Solenoid Function	ON Energized	OFF De-Energized			

Motor Brake Application


Two position, Two Way, Three Ported, Single Solenoid, Spring Return, Internal Pilot Operated, Normally Closed, 3/8" NPT Pneumatic Control Valve.

Valve Specifications:


Ambient Temp. 0° F. to 120° F.


Electrical	120 VAC 60 Hz Inrush - 14.7 Volt/Amp (.12 Amps)
	Seal - 10.4 Volt/Amps (.09 Amps)
Coil	General Purpose Class A Continuous Duty.
Pr. Range	150 PSI Max.

This Control Valve is used on Motor Brake Applications.

Ref. No.	o. Part Name		Ref. No.	Part Name	Qty.
853 853A 853B 853C 853D 853E	Solenoid and Power Light Assembly Solenoid Sub-assembly Gasket Power Light M4 x 0.7 x 37 mm But. Hd. Screw M4 Lock Washer	1 1 1 2	854 854A 854B 854C	Control Valve Spool Assembly Spool Sub-Assembly 1/4"-20 x 1-3/4" Lg. Soc. Hd. Screw 1/4" Lock Washer	1 2

Brad-Harrison Connector Wiring

3 - PIN		-			CONNECT TO SOL	ENOID WIRE (Color)			
	BRAD/HA Conne		SINGLE Solenoid	DUAL S	OLENOIDS	T STATION #1	HREE SOLENOIDS STATIO	-	
	PIN/COLOR	FUNCTION	SOL. "A"	SOL. "A"	SOL. "B"	SOL. "A"	SOL. "A"	SOL. "B"	
	1 - GREEN	EARTH GROUND	*CHASSIS						
	2 - BLACK	POWER - 1	YELLOW						
4 - PIN	3 - WHITE	NEUTRAL/ COMMON	YELLOW						
	1 - BLACK	POWER - 1	YELLOW	YELLOW					
	2 - WHITE	NEUTRAL/ COMMON	YELLOW	YELLOW	RED				
\bullet $\bullet^3//$	3 - RED	POWER - 2	NOT USED		RED				
	4 - GREEN	EARTH GROUND	*CHASSIS	*CHASSIS					
5 - PIN TANDARD)	1 - WHITE	NEUTRAL/ Common	YELLOW	YELLOW	RED	YELLOW	YELLOW	RED	
	2 - RED	POWER - 2	NOT USED		RED		YELLOW		
	3 - GREEN	EARTH GROUND	*CHASSIS	*сн/	ASSIS		*CHASSIS		
	4 - ORANGE	POWER - 3	NOT USED	NOT	USED			RED	
	5 - BLACK	POWER - 1	YELLOW	YELLOW		YELLOW			

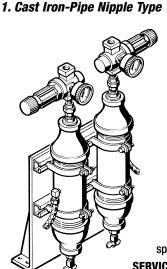
*Green earth ground wires always connects to the green colored chassis screw located in the valve body junction box.

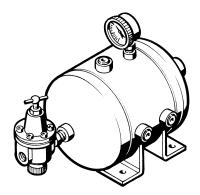
 \odot

Õ

1PI-Br-3/8

CONTROL


VALVE


Accumulators

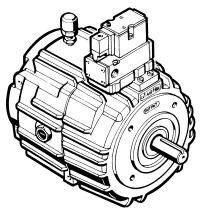
Pneumatic Accumulators are recommended for high cyclic applications and when the air supply fluctuates. Fluctuating air supply will cause erratic operation. There are two basic types:

1. Cast Iron-Pipe Nipple Type complete with air regulators, pressure gauges and mounting bracket. This type comes in two std. sizes and can be ordered with the following part numbers:

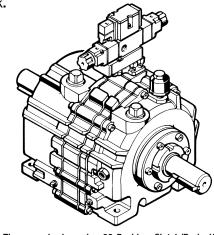
2. Welded Steel Tank Type which also includes an air regulator, pressure gauge and mounting feet. This type comes in one std. size and can be ordered with the following part number:

2. Welded Steel Tank Type

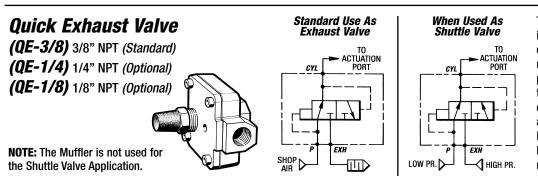
I Contact Force Control for Special Accumulator Requirements to meet your specific needs and application parameters.


SERVICING NOTE: Each accumulator tank has a drain cock located at the bottom. Drain the moisture from the tanks weekly or until experience dictates otherwise.

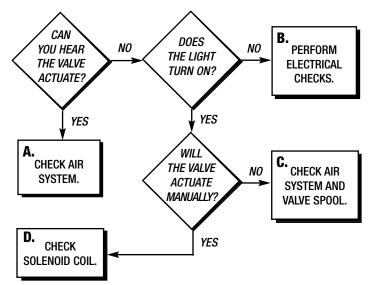
Optional Manifold Mounted Control Valve


1PC-3/8, 2PC-3/8, 2PI-3/8, 2PI-5/8, 2PI-3/4 and 2PC-SC-3/8 Control Valves

These pneumatic control valves can also be furnished with bottom porting for Manifold Mounting. This allows the control valve to be directly mounted to the drive unit which gives you a *compact* and efficient drive unit with improved response time.


When ordering a **Manifold Mounted Control Valve**, just use the **Ordering System Chart** and specify "**Manifold Mounted**" in the appropriate block.

The example shown is a 1.5 *Posidyne* Clutch/Brake Unit with a 2 Pr. Inlet-3/8 Manifold Mounted Control Valve


The example shown is a 03 *Posidyne* Clutch/Brake Unit with a **2-PC-3/8 Manifold Mounted Control Valve.**

The use of **Quick Exhaust Valves** installed directly at the actuation port of the clutch or brake improves response time, repeatability and final positioning accuracy for most applications. It is recommended that when the control valve is located 10 Ft. or more away from the drive unit this Quick Exhaust Valve is used in each pressure line. This valve is available as part number **QE-3/8, QE-1/4 or QE-1/8**.

TROUBLE SHOOTING PROCEDURE

If the *Posidyne* Clutch/Brake or *Posistop* Motor Brake operation is erratic, sluggish or not engaging properly, make the following Checks to Trouble Shoot the Pneumatic System.

A. Checking the Air System

1. Check the air supply pressure and volume to see if there is adequate and constant compressed air to properly actuate the piston. See **Pressure vs. Static Torque Charts** for minimum and maximum air pressure requirements.

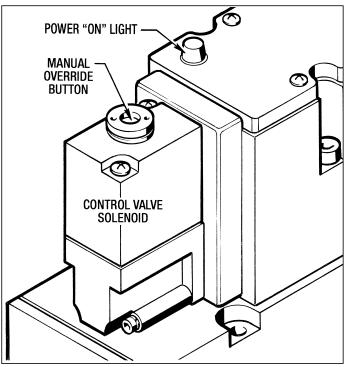
(Adjust as necessary.)

Also check the air supply for cleanliness to make sure that there are no contaminant's in the air to affect the operation of the unit.

2. Check the Filters to see if the filter elements are dirty and need cleaned or replaced.

(Clean or replace as necessary.)

3. Check the Muffler or Silencer installed in the Valve Exhaust Port to see if it is dirty and needs cleaning.


(Remove and clean in a suitable solvent.)

4. Check any Pressure Regulators to see if they are set for the proper air pressure as specified in the Pressure vs. Static Torque Charts.

(Adjust as necessary.)

5. Check any Accumulators for any accumulated moisture in them.

(Drain out any water.)

Control Valve "Manual Override" Button and Power "On" Light

B. Electrical Checks

1. Check the Voltage and all Electrical Connections.

(Adjust the Voltage and tighten any loose connections as necessary.)

C. Checking the Valve Spool Operation

If the Valve Spool did not actuate properly when you pressed the "Manual Override" Button the Spool could be sticking or there is some other mechanical failure in the valve.

We recommend that you replace the whole Spool, Pilot Valve and Solenoid Assembly. They can be ordered from each exploded view drawing for your individual control valve.

D. Checking Solenoid Coils

Check the Coil Resistance and for Current Leakage as shown on the next page.

(Replace the Solenoid and Pilot Valve Assembly if the coil is bad.)

E. Check the Unit Piston Chamber for water or oil contamination.

(Disassemble the drive unit to the extent necessary to drain the water or oil out of the chamber.)

Refer to each particular Service Manual for each Clutch and/or Brake for Disassembly Procedure and any other problems with the drive unit not covered in this manual.

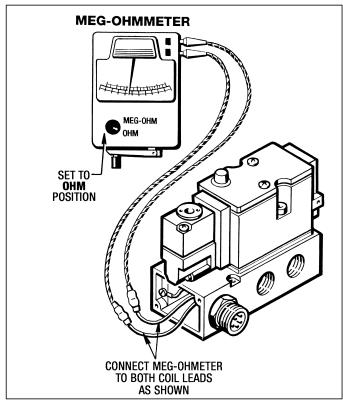
CHECKING SOLENOID COILS

A. Coil Resistance Test

Remove the end cover from the Sub-Base Assembly and remove the (2) wire nuts from the (2) coil leads. Disconnect the (2) power leads.

Hook-Up a Meg-Ohmmeter to both coil leads as shown below. Set the Meg-Ohmmeter to "Ohm" range and test Resistance at 500 VDC.

The Resistance should read as follows:


MAC 55 Series Control Valves

MAC 82 Series Control Valves

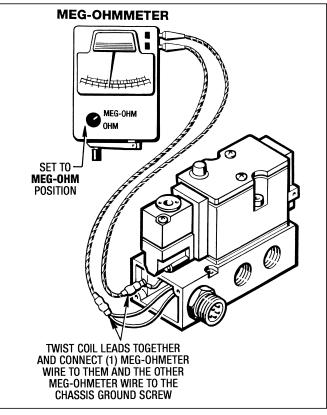
MAC ISO Series Control Valves

24 VDC (17.1 Watts)	
110 VAC (6.8 Watts)	

A reading outside of this range would indicate that the Coil is bad and needs to be replaced.

Coil Resistance Testing

NOTE:


A Hi-Pot Tester can be used for this test but do not exceed 1250 VDC.

B. Coil Current Leakage Test

Remove the end cover from the Sub-Base Assembly and remove the (2) wire nuts from the (2) coil leads. Disconnect the (2) power leads.

Connect (1) alligator clip to both Coil Leads and the other one to Chassis Ground. (See Figure below.)

A reading of **10 Meg-Ohms or greater** indicates that the Coil is fine and does not need to be replaced. Anything much less would indicate that there is a short to ground and the Coil would need to be replaced.

Coil Current Leakage Testing

NOTE:

A Hi-Pot Tester can be used for this test but do not exceed 1250 VDC.

GENERAL REPAIR, SERVICING AND ORDERING REPAIR PARTS

GENERAL REPAIR AND SERVICING

- 1. Each Control Valve is broken up into logical Sub-assemblies that can be ordered and replaced. Certain Sub-Assemblies are broken down even further so that individual parts can be ordered and replaced if you choose.
- 2. Some screws are Metric and some are English. The sizes and description is given on the Control Valve Parts List.
- Always make sure that the Rubber Seals between valve components are completely seated in their prospective groove before reassembly. Be very careful not to pinch them at reassembly. If they get damaged always replace them with new ones.
- 4. If at any time you change voltages for the solenoid, you must also change the Power "ON" Light to match the voltage.

CUT ALONG DOTTED LINE

When ordering repair parts, please copy, fill out and fax the Control Valve Information Form below with your order to our Parts Ordering Department.

Complete Shipping Information.

Failure to include all information will only delay your parts order. Unless another method is specified all parts will be shipped United Parcel Service. Air freight and other transportation services are available but only if specified on your order.

> Force Control Industries, Inc. 3660 Dixie Highway Fairfield, Ohio 45014 Phone: (513) 868-0900 Fax: (513) 868-2105 E-Mail: info@forcecontrol.com

CONTROL VALVE REPAIR PARTS INFORMATION FORM

	DRIVE UNIT	USED ON	
Posidyne -	Manifold Mounted Control Valve	Model No.	
Posistop -	Yes No	Coriol No	
Positorq -		Serial No.	
	(FROM NAME PLAT	TE ON DRIVE UNIT)	

CONTROL VALVE INFORMATION

	Valve Type		Example: 2PC-3/	8 or 2PC-SC-3/8
Part Ref. No.		Part Name		Quantity
	•	(FROM PARTS LISTS ON PAGES 5 - 11)		

	ON VALVE SUB-ASSEMBLIES
SOLENOID	
Model No.	VALVE SPOOL ASSEMBLY
	Model No.
Modif. No. Voltage Watts	
	Modif. No.
REGULATOR	
Model No.	

Posidyne Pressure vs. Static Torque Chart

(01-1.5 Single Clutch and 1.5 Dual Clutch)

				Clut	tch					Brake		
		C _M			C _E	CT	B ₀		Вм		Bs	B _T
Size	Logic	Clutch Static Torque	@	Maximum Actuation Pressure	Clutch Engmt. Air Pr. Req'd.	Clutch Net Torque	Spring Set Only-Torque w/o Air Assist	Brake Static Torque	@	Maximum Actuation Pressure	Brake Spring Bias	Brake Net Torque
		(Lb.In.)		(PSIG)	(PSIG)	(Lb. In./ PSIG)	(Lb.In.)	(Lb.In.)		(PSIG)	(PSIG)	(Lb. In./ PSIG)
	S	108	@	70	6.4		10	132	@	70	5.5	1.75
	SA	97	@	70	14.8		23	102	@	45	12.9	1.75
01	Α	100	@	80	22.1	1.75	33				19	1.75
	В	62	@	80	44.1	1.75	67				38	1.75
	C	108	@	70	6.4							
	Р	105	@	60			0	105	@	60		1.75
	S*	427	@	60	4.2		32	484	@	60	3.3	7.6
	SA	387	@	70	18.8		110	492	@	70	15.0	5.5
1.5	Α	387	@	70	18.8	76	110				15.0	
	В	240	@	70	37.6	7.6	220				30.0	
	C	427	@	60	4.2							
	P*	427	@	55	3.0		0	484	@	63	0	7.6

(02-03 Single and Dual Clutch)

	S*	445	@	60	7.01	8.3	40	472 @	60	5.6	7.2
	SA	368	@	80	24.50	0.5	105	332 @	40	18.4	5.7
02**	Α	387	@	80	21.60		110			19.4	
	В	240	@	80	43.40	6.6	220			38.6	
	С	254	@	60	21.60	0.0					
	P*	445	@	53	3.0		0	472 @	66	0	7.2
	S*	1116	@	60	6.84		103	1183 @	60	5.7	18.0
	SA	1245	@	80	20.70		418	1378 @	40	17.4	24.0
	Α	1237	@	80	21.10		418			17.4	
2.5**	В	794	@	80	42.20	21.0	835			34.8	
	С	1063	@	60	9.37						
	SCP	1234	@	60	1.26		0	1051 @	60	-1.5	18.0
	P*	1116	@	53	3.0	-	0	1183 @	66	0	18
	S*	2158	@	60	6.00		121	1719 @	60	4.5	26.6
	SA	2306	@	60	22.30		514	1848 @	40	15.4	33.4
	Α	2368	@	80	21.00		522			15.6	
03	В	1530	@	80	41.70	40.0	1041			31.2	
	С	2064	@	60	8.36						
	SCP	2233	@	60	4.12	1	0	1518 @	60	-3.0	26.6
	P*	2158	@	54	3.0		0	1719 @	65	0	26.6

NOTE: For Dynamic torque ratings multiply static torque ratings above by .86 for sizes 01 to 03.

* S and P Logic not available on 01, 02 and 03 Dual Clutch *Posidynes*. ** For 02 and 2.5 MSDr see page 19.

Posidyne Pressure vs. Static Torque Chart

(05-20 Single and Dual Clutch)

				Clu	tch					Brake		
			C _M		C _e	CT	B ₀		Вм		B _s	Β _T
Size	Logic	Clutch Static Torque		Maximum Actuation Pressure	Clutch Engmt. Air Pr. Req'd.	Clutch Net Torque	Spring Set Only-Torque w/o Air Assist	Brake Static Torque	@	Maximum Actuation Pressure	Brake Spring Bias	Brake Net Torque
	0*	(Lb.In.)		(PSIG)	(PSIG)	(Lb. In./ PSIG)	(Lb.In.)	(Lb.In.)		(PSIG)	(PSIG)	(Lb. In./ PSIG)
	S*	3633	@	60	5.55		176	3380	@	60	3.3	53.4
	SA	3792	@	80	23.16		936	3336	@	40	15.6	60.0
	A	3792	@	80	23.16		936				15.6	
05	В	2251	@	80	46.26	66.7	1866				31.1	
	C	3386	@	60	9.25		0					
	SCP	3661	@	60	5.13		0	2942	@	60	-4.9	53.4
	P*	3633	@	54	3.0		0	3380	@	63	0	53.4
	S*	8336	@	60	6.85		619	8848	@	60	4.5	137.4
	SA	8253	@	80	27.38		2481	7968	@	40	18.1	137.2
	Α	8791	@	80	23.95		2368				17.3	
10	В	5030	@	80	47.93	156.8	4733				34.5	
	C	7905	@	60	9.60		0					
	SCP	8501	@	60	5.80		0	7660	@	60	-4.2	137.2
	P*	8336	@	53	3.0		0	8848	@	65	0	137.4
	S*	14220	@	80	6.85		613	11500	@	80	4.5	136.1
	SA	10314	@	80	27.04		2335	7778	@	40	17.2	136.1
	А	10896	@	80	23.95		2354				17.3	
11	В	6234	@	80	47.93	194.4	4695				34.5	
	C	13686	@	80	9.6		0					
	SCP	14424	@	80	5.80		0	10319	@	80	-4.2	136.1
	P*	14220	@	73	3.0		0	11500	@	86	0	136.1
	S*	23229	@	80	9.61		1827	24915	@	80	6.3	288.6
	SA	18348	@	80	24.40		4644	16188	@	40	16.1	288.6
	Α	20272	@	80	18.57		3538				12.3	
20	В	11910	@	80	43.91	330.0	5645				19.6	
	C	22770	@	80	11.00		0					
	SCP	24377	@	80	6.13		0	21674	@	80	-4.9	288.6
	P*	23229	@	70	3.0		0	24915	@	86	0	288.6

NOTE: For Dynamic torque ratings multiply static torque ratings above by .86 for all units. * S and P Logic not available on Dual Clutch *Posidynes*.

To find Torque Developed at a given Actuation Pressure.

Clutch Torque = (PSI - C_E) x C_T Brake Torque = (PSI + B_S) x B_T

To find Actuation Pressure needed for Req'd. Torque.

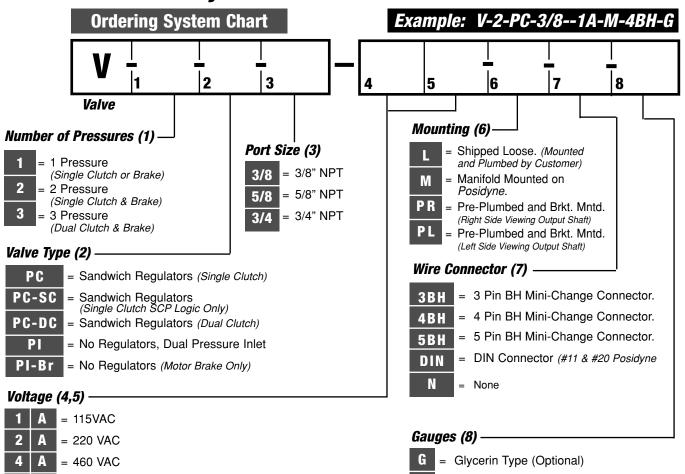
Clutch PSI = $(T_R / C_T) + C_E$ Brake PSI = $(T_R / B_T) - B_S$

Posidyne Pressure vs. Static Torque Chart

(02 and 2.5 Multi-Speed Drive Only)

				Primary C	lutch		Secondary Clutch and Brake					
		См			C E	CT	B ₀	B _M			Bs	BT
Size	Logic	Clutch Static Torque (Lb.In.)	@	Maximum Actuation Pressure (PSIG)	Clutch Engmt. Air Pr. Req'd. (PSIG)	Clutch Net Torque (Lb. In./ PSIG)	Spring Set Only-Torque w/o Air Assist (Lb.ln.)	Brake Static Torque (Lb.In.)	@	Maximum Actuation Pressure (PSIG)	Brake Spring Bias (PSIG)	Brake Net Torque (Lb. In./ PSIG)
	SA	314	@	70	29	7.6	165	426	@	30	19	8.7
02	Α	424	@	70	14		85			10		
02	В	290	@	70	32	1.0	190				22	
	C	317	@	45	7							
	S	1118	@	60	7.57		120	1400	0	60	5.6	21.3
	SA	1189	@	80	24.25		457	1554	@	40	16.7	27.4
2.5	Α	1227	@	80	22.46	21.3	432				15.7	
	В	749	@	80	44.85		862				31.4	
	C	1057	@	60	10.43							

Posistop Motor Brake Pressure vs. Static Torque


Motor Brake	Static Torque	Qty. of Springs	No. of Friction	No. of Drive	to Re	ressure lease <i>(PSI)</i>		
Size	(Ft. Lbs.)		Discs	Plates	Min.	Max.		
	6	2			20			
MB-056	9	3	3	4	30	120		
WID-030	12	4			40	120		
	18	6			60			
	20	2	2	6	20			
MB-180 MB-210	30	2			20			
	45	3	3	4	28	120		
MB-210L	60	4		4	35			
	90	6			51			
	75	2			18	120		
MB-250	150	4	5	5	32			
MB-280	225	6		5	46	120		
	300	8			60	*		
	120	3	4	7	23			
	150	3			23			
MB-320	200	4	5	6	30	120		
	300	6			42	-		
	450	9	1		62			

Motor Full Load

Torque vs. Motor Frame Size

U Frame Motors		T Frame Motors	
Frame Size	Torque (Lb. Ft.)	Frame Size	Torque (Lb. Ft.)
56	3		
		143	3.4
		145	6
182	3.4	182	9
184	6.7	184	15
213	9	213	22.5
215	15	215	30
254	22.5	254	45
256	33.5	256	60
284	45	284	75
286	60	286	90
324	75	324	120
326	90	326	150.1
364	120	364	180.1
365	150.1	365	240.1
404	180.1	404	300.1
405	240.1	405	375.1
444	300.1	444	450.2
445	360.1	445	600.2

Ratings are for Direct Coupled Drive Units. Multiply Drive Ratio X Frame Torque for Belt Driven Drive Units.

D

Ν

= None

= Dry Type (Standard)

How to order your Pneumatic Control Valve...

D = 12 VDC

= 24 VDC

1

2 | D

FORCE CONTROL INDUSTRIES, INC. Worldwide Leader in Oil Shear Technology.

Providing today's industries with Oil Shear Clutch and Brake Drives that delivers: Flexibility • Efficiency Endurance • Performance Dependability

"Built to Last - Guaranteed to Perform"

FORCE CONTROL INDUSTRIES, INC.

MAIN OFFICE

P.O. Box 18366 Fairfield, Ohio 45018

3660 Dixie Highway Fairfield, Ohio 45014

Tel: (513) 868-0900 Fax: (513) 868-2105

DETROIT OFFICE 24419 Sorrentino Court

Clinton Twp., Mich. 48035

Tel: (586) 792-7100 Fax: (586) 792-7329

E-Mail: info@forcecontrol.com Web: www.forcecontrol.com