APPLICATION: Planer Breakdown (Tilt) Hoist

INDUSTRY: Dimension Lumber Mills

PRODUCT: Oil Shear Posidyne Clutch/Brake
PLANER BREAKDOWN (TILT) HOIST

WHERE THEY ARE USED: The Breakdown or Tilt Hoist is used in dimension lumber mills to un-stack dry lumber a layer at a time for sorting, inspection, or in-feed to the planer.

HOW THEY WORK: A full stack of lumber is loaded onto the hoist cart. The cart is then indexed up until the first layer of lumber slides off onto the out-feed conveyer. When the first layer has been removed the lift is indexed up again to allow the next layer to be removed. The hoist is often actuated using a foot pedal controlled by the operator. This process is continued until the stack is completely removed, at which time the hoist cart is lowered to be reloaded. Often an auxiliary high speed return motor is connected through a speed increaser belt drive to lower at a higher rate.

PROBLEMS SOLVED: Often a brake motor is used on this application. The high starting inertia plus the load inertia and weight cause high starting currents in the motor. The Posidyne allows the motor to run continuously eliminating the motor rotor inertia when starting and stopping. This reduces the load requirement of both the clutch and the brake.

Longevity - The oil shear Posidyne Clutch/Brake is designed to start heavy loads smoothly, and with very little wear on the friction surfaces. The sealed design seals out dust, dirt and moisture.

Consistent Accuracy - The oil shear system makes the Posidyne clutch/brake consistent over cold start to hot run, and day to day making it easy for the operator to control.

IMPORTANT FEATURES:

- Totally enclosed, oil cooled unit for long service life with low maintenance in the harshest environments.

- Oil Shear Technology and innovative friction material provide smooth controlled torque for quick, smooth acceleration.

- Consistently accurate starts and stops with no adjustment required.

- Continuously running standard motor for long service life and lower energy consumption.